NATIONAL ENERGY TECHNOLOGY LABORATORY

University of Pittsburgh UrginiaTech WestVirginiaUniversity URS

Kirk Gerdes

N**=TL** Carnegie Mellon

DOE-NETL, Technical Coordinator – Fuel Cells

Acknowledgements

NETL RUA Fuel Cell Team

- Researchers at NETL, CMU, PSU, WVU, and URS
- Bryan Morreale

SECA Program Management

- Briggs White, Joe Stoffa, and Rin Burke
- Shailesh Vora and Dan Driscoll

NETL Multi-Media Team

- Michael Gipple
- Bobby Snelson
- Tim Ford

NETL RUA - Solid Oxide Fuel Cells

Support Industrial Development

Operation of NETL Solid Oxide Fuel Cell Multi-Cell Array on direct, coal-derived synthesis gas at the National Carbon Capture Center at Wilsonville, AL in August/Sept 2009.

Collected 4,000 + cell-hours of data to support development of gas cleanup systems sufficient for gasifier / fuel cell integration.

Innovate Technology

Cathode infiltration technology is being developed to enhance the SOFC operating performance. Initial results have demonstrated > 40% performance improvement and acceptable material stability.

Evaluate Advanced Concepts

Fundamental computations (3D multiphysics model, at left) inform modeling of advanced degradation, performance, and microstructural evolution at the cell and stack level.

Integrated gasifier / fuel cell / turbine systems (IGFT, at right) support advanced fuel cell demonstrations efforts (2013+). NETL operates a system hardware evaluation and controls development platform.

NETL RUA Fuel Cells Team

Links fundamental examination and practical implementation

NETL RUA Fuel Cells Team

Electrode Engineering and Degradation Modeling

Microstructural Evolution Model

3D Multi-physics Model

Cell Degradation Modeling

Oxygen Reduction Reaction Model

3D Reconstructions

Microscopic/Spectroscopic Analyses

Computational Chemistry

Materials Development

Electrode Engineering (Infiltration)

Materials Development

3 Illustrations

Cathode Infiltration

Technology Scale-up and Transfer

Electrode Engineering

Stack Performance Control

Microstructural Evolution

Correlating structure and function

Primary contributors with posters at workshop

- Shiwoo Lee National Research Council Senior Fellow, National Energy Technology Laboratory
- Xueyan Song Asst Professor, Mechanical and Aerospace Engineering, West Virginia University
- Yun Chen Research Asst Prof, Mechanical and Aerospace Engineering, West Virginia University

Additional contributors in NETL RUA infiltration research

- Ed Sabolsky Asst Professor, Mechanical and Aerospace Engineering, West Virginia University
- Paul Salvador Professor, Materials Science and Engineering, Carnegie Mellon University

Infiltration concept

Long-term stability verification

> Variation of Ro and Ro of selected baseline cell and infiltrated cell for 1,500 h

Verified stability of electrochemical performance in 1500 hour test, cell degradation not accelerated above baseline > Polarization resistance vs. time of baseline cells and infiltrated cells

Short-term performance validation

Demonstrated statistically significant performance improvement for infiltrated cathodes in 200 hour tests > 30% peak power density increase (average) observed

Industry Engagement

Unaltered industry cells + unmodified infiltrate: 200 hour tests > 38% power density increase @ 0.7 V (average)

NATIONAL ENERGY TECHNOLOGY LABORATORY

FY12

Topic: Effects of infiltration solution chemistry on microstructure

LSCoPt infiltration in SDC-LSCF cathode

❖ Non-polymerization complex (NPC) route

> Precursor solution composition: Nitrate of La, Sr, Co, and Pt

+ citric acid (No ethylene glycol)

➤ Removal of ethylene glycol (non-polymerizable complexing process) made infiltrated particles much smaller in size (~ 50 nm) free of macro-network structure, even though high contact angle may be maintained.

❖ Non-Polymerization complex (NPC) route + mixed solvent

Aqueous solvent

Mixed solvent Azeotropic mixture of H₂O and EtOH

- Numerous fine infiltrate particulates are observed to coat surfaces of backbone grains homogeneously due to reduced surface tension of infiltration solution of mixed solvent.
- ➤ Ethanol (22.3 dyn/cm) and water (72.8 dyn/cm).

▶ Bode plots of Baseline, LSCoPt-PC, LSCoPt-NPC, LSCoPt-NPC-MS

(PC: Polymerizable complex, NPC: Non-PC, MS: Mixed solvent)

- ✓ Impedance of region II (10-200 Hz) is reduced for the cells LSCoPt-NPC and LCoPt-NPC-MS:
- ⇒ Evidence of cathode activation by infiltration
 - Data were obtained under DC bias of 0.5 A/cm² after 24 h operation at 750°C. Solid lines are the data fitted to an equivalent circuit model.

➤ Cell voltage variation over 280 h under 0.25 A/cm²

Linear slope of the cell voltage:

LSCoPt-NPC: -0.39 10⁻² mV/h (-0.42 %/1000h)

LSCoPt-NPC-MS: -1.20 10⁻² mV/h (-1.28 %/1000h)

NATIONAL ENERGY TECHNOLOGY LABORATORY

Constant Current Results (35 Amps, > 300 mA/cm²)

- Manufacturer 1 completed 1500+ hr short stack test of unmodified infiltrate material and conventional slip chemistry
- Repeating test with <u>customized infiltrate and slip chemistry</u>

- Manufacturer 2 performing ongoing short stack test (> 500 hours) of unmodified infiltrate material / chemistry
- ASR @ 800°C improved by 3%
- ASR @ 700°C improved by 13%
- Plan to repeat test with customized infiltrate

Potential applications of electrode engineering through infiltration are examined in a physically informed, simulated system

- Ismail Celik Professor, Mechanical & Aerospace Engineering, West Virginia University
- Raju Pakalapati Research Mechanical Engineer, West Virginia University
- Xingbo Liu Associate Professor, Mechanical & Aerospace Engineering, West Virginia University
- Hui Zhang Research Asst Prof, West Virginia University

Poster on this and related topics at session following

- Infiltration provides an additional tool to engineer active electrode interfaces
- Enables control over parameter distributions, both at cell-tocell and localized scales
- Succinctly: Possible to depress state variable gradients within the SOFC stack
- Illustration: Control of cell overpotential distribution

- Simulation is created to examine the role of infiltrate in controlling overpotential
- Assumptions/Simulation Basis:
 - Full cell multi-physics using ORR developed for LSM
 - Simulation baselined/calibrated for approximately 80 mV cathode overpotential at 800°C and 250 mA/cm² (cell average)
 - Infiltrate is modeled purely as increase in local activity of ORR
 - 3 cases are considered
 - Basecase (no infiltrate, with simulation output approximately matched to experiments)
 - Infiltrate uniformly applied to entire cathode
 - Infiltrate applied with 1D linear gradient parallel to gas flow
- Simulation of local overpotential as a function of air utilization
 - Assumes 15% as a standard value
 - Minimum of 10% utilization, maximum of 20% utilization

Link to graphical representation here

Results – Cathode overpotential difference from inlet to outlet

Cathode overpotential gradient from inlet to outlet is controllable in cell

Implications

- Engineering the cathode overpotential (cathode activity) as a function of position inside the stack is possible.
- Infiltration provides a semi-independent technique for engineering stack performance and durability.

Cathode aging and performance degradation attributable to microstructural evolution is examined

- LongQing Chen Professor, Materials Science & Engineering, Penn State University
- Linyun Liang Post-Doctoral Scholar, Materials Science & Engineering, Penn State University
- Poster on this and related topics at session following

Other contributors to this research

- Shiwoo Lee National Research Council Senior Fellow, National Energy Technology Laboratory
- Raju Pakalapati Research Asst Prof, West Virginia University
- Paul Salvador Professor, Materials Science and Engineering, Carnegie Mellon University
- Sudip Bhattacharya Post-Doctoral Res Assoc, Materials Science & Eng, Carnegie Mellon Univ

- Evolution of microstructure over long operating periods may be a significant source of long-term performance degradation
- Evolution manifests as coarsening of grains to diminish 3PB
- Also considers diffusion of cations and generation of secondary phases

- Simulation is created to examine the role of microstructural coarsening on overpotential in operated SOFC
- 2 possible routes to calibrate/tune model:
 - BEST: Measure surface energies of aged specimen
 - NEXT BEST: Tune model parameters to match aged specimen
- Assumptions and simulation basis for present model:
 - Measured cell overpotential is exclusively the result of cathode coarsening
 - 3PB length is calculable using 3D multi-physics model and measured cell overpotential (lower than conventional 3PB concentration is used)
 - 2 cases are considered
 - Measured overpotential change is 100% attributable to 3PB degradation
 - Measured overpotential change is 50% attributable to 3PB degradation
- Correlate cell average overpotential as a function of 3PB length

Experimental Data

The discontinuities are removed and the data are smoothed over 2 hour intervals

Data: Shiwoo Lee, NETL

Figure: Raju Pakalapati, WVU

Multi-Physics Simulation

Evolution of TPB density estimated using the measured degradation rate of cathode

Analysis and Figure: Ismail Celik and Raju Pakalapati, WVU

100% of measured degradation occurring in first 750 hours of operation is attributable to cathode coarsening

Analysis and Figures: LongQing Chen, Linyun Liang, PSU

50% of measured degradation occurring in first 750 hours of operation is attributable to cathode coarsening

Analysis and Figures: LongQing Chen, Linyun Liang, PSU

Summary

3 illustrations describe collation of fundamental, discrete research activity leveraged for industrial purposes

Illustrations convey possibility of detailed engineering and development using simulations grounded in physics

NETL priority: Pursue collaborative development focused on specific (industry relevant) materials and microstructures

Ideal pursuit: Model development and engineering with strong industry guidance and highest possible magnitude of collaboration

Final Acknowledgements

Poster on the topic of cation segregation (cathode deactivation)

- Harry Finklea Professor, Chemistry, West Virginia University
- Harry Abernathy Research Materials Scientist (photo not included)

Business development activity

Tom Kalapos – Fuel Cells Activity Manager, URS Corp (NETL)

